the rotatable disc 56 via force F without actuating the control function of the disc and without having to move their fingers to try and avoid it. As should be appreciated, a user generally needs to apply a rotary motion to the rotatable disc 56 to get it to implement the control function and thus it tends not to implement the control function when the user clicks substantially through its axis 57. [0039] In addition, the rotatable disc 56 may be positioned relative to any portion of the body 54 (e.g., sides, top front, back, etc.). In the illustrated embodiment, the rotatable disc 56 is seated at a front portion 60 of the body 54. Moreover, the rotatable disc may be configured to help define the shape and/or form of the mouse 50. For example, as shown in FIG. 3, the top surface or engageable surface 64 of the rotatable disc 56 is contoured to the shape of the front portion 60 of the body 54. In most cases, the top surface 64 is completely exposed to the user, i.e., the top surface 64 is not covered by a portion of the body 54. [0040] The rotatable disc 56 may also include tactile features 62, which provide tangible surfaces that help the user manipulate the rotatable disc (e.g., allow the user to more easily grip the disk with a finger) and that inform the user of its rotatable position during rotation thereof. The tactile features 62 may be widely varied. For example, the tactile features 62 may be bumps, knurls, recesses, cavities and/or the like. The tactile features 62 should be least obtrusive surface as possible while still allowing the user to grip the disc. In most cases, the tactile features 62 are disposed around the outer periphery of the disc 56. This configuration informs the user where the edge of the rotatable disc 56 is when using the rotatable disc 56. By being at the edge, the user may supply the greatest amount of torque for moving the rotatable disc 56 about the axis 57. The center of the rotatable disc 56 is generally smooth like the rest of the mouse surface, i.e., the external surface of the body. In the illustrated embodiment, the tactile features 62 are bumps that extend above the top surface 64 of the scroll wheel 56. This allows the rotatable disc 56 to be felt by one or more fingers of the user. [0041] Referring to FIG. 6, the entire top surface 54 of the rotatable disc 56 is advantageously accessible to the user's fingers. This configuration generally allows the rotatable disc 56 to be easily manipulated by one or more fingers when the palm side surface of the hand is placed on the back portion 58 of the body 54. For example, the thumb 80 and two rightmost fingers 82 (or leftmost fingers if left handed) are used to grip the sides 84 of the body 54 while the two remaining fingers 86 (either by themselves or in combination) are used to manipulate the rotatable disc 56. As shown, the rotatable disc 56 can be continuously rotated by a simple swirling motion of the finger 86, i.e., the disc 56 can be rotated through 360 degrees of rotation without stopping. In addition, the user can pull or push on the disc tangentially from all sides of the rotatable disc 56. For example, the rotatable disc 56 may be manipulated forwards and backwards as shown by arrows 88 and side to side by arrows 90. [0042] FIG. 7 is a side elevation view, in cross section, of a mouse 100, in accordance with one embodiment of the present invention. By way of example, the mouse 100 may generally correspond to the mouse 50 shown in FIGS. 2-4, 7 and 8. For example, the mouse 100 generally includes a base 102, a body 104 and a disc 106 that may correspond to the base 52, body 54 and disc 56 of the mouse 50. In general, the base 102 and the body 104 form the housing for the mouse 100. As such, the base 102 and body 104 enclose a plurality of internal components 108, which provide different functions for the mouse 100. These components may be electrical and/or mechanical components. For the sake of clarity, not all of the internal components are shown in FIG. 5. In one embodiment, the electronic components of the mouse 100 are disposed on a printed circuit board (PCB) 110, which is mounted to the base 102. [0043] Broadly, the base 102 provides a platform for sliding the mouse 100 along a surface and for supporting the other components of the mouse 100, as for example, the internal components 108, the body 104 and the disc 106. The body 104, which is pivotally coupled to the base 102, provides a clicking action for selecting and executing actions on the GUI. As should be appreciated, the body 104 is the button of the mouse 100 and therefore the body has no separate mechanical buttons disposed thereon. While the body 104 has no buttons, it does support the disc 106 thereon. The disc 106 is rotatably coupled to the body 104. The disc 106 may provide a scrolling feature. Because the scroll disc 106 is coupled to the body 104, it moves with the body 104 when the body 104 is pivoted with respect to the base 102, i.e., during the clicking action. [0044] More specifically, the body 54 includes an inner shell 112 and an outer shell 114. The outer shell 114 is structurally coupled to the inner shell 112. The means for coupling the outer shell 114 to the inner shell 112 is not shown herein, however, any suitable coupling means may be used. By way of example, the outer shell 114 may be coupled to the inner shell 112 via fasteners such as snaps, screws, glues and the like. Alternatively, the inner and outer shell 112, 114 may be integrally formed from a single piece of material. [0045] The inner and outer shells 112, 114, as well as the base 102, are generally formed from a suitable material such as plastic. In one implementation, the outer shell 114 is formed from a translucent material so that the inner shell 112 may be visible to a user. As shown, the inner shell 112 is disposed between the base 102 and the outer shell 114. As such, the inner shell includes a top surface 116, which substantially faces the inner surface of the outer shell 114 and a bottom surface 118 that substantially faces the base 102. In one embodiment, the inner shell 112 is configured to cover the electronic components disposed on the PCB 110. [0046] The inner shell 112 is pivotally coupled to the base 102 via a pivot 120 located towards the rear of the mouse 100. By way of example, the pivot 120 may include a pivot support attached to the base 102, and the inner shell 112 may include an internal pivot pin for mating with an opening in the pivot support. The pivot 120 allows the body 102 to swing (as shown by arrow 122) between an unclicked position, placing the body 104 away from the base 102, and a clicked position, placing the body 104 towards the base 102. In the clicked position (e.g., when a downward force is applied to the body 102), the inner shell 112 is configured to engage a switch 124, which is mounted on the PCB 110 and which is located opposite the pivot 120. That is, during the clicking action, a bottom portion 126 of the inner shell 112 is pushed against an actuator 128 of the switch 124 thereby activating the switch 124, i.e., the actuator 128 is configured